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Two correlation functions for estimating effects of the physical cluster formation on features of a fluid must
satisfy a system of two integral equations which is equivalent to the Ornstein-Zernike equation and the sum of
the two correlation functions is equivalent to the pair correlation function. A specific effect of the physical
cluster formation persuades the dependence of their sum on the distancer between particular pair particles to
develop a deviation from the dependence which is expressed as the product of the reciprocal ofr and a
particular function given as the Taylor series due to powers ofr. The use of the two correlation functions
allows the formation of extremely large physical clusters to be predicted at least near the triple point. The two
correlation functions can contribute to examining a feature of a fluid in a specific situation where an effect of
the physical cluster formation are considerable.
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I. INTRODUCTION

Physical clusters which are formed by attractive forces
among particles can allow the density fluctuations to be en-
hanced in a fluid being at least in the gas state. The degree of
the density fluctuations reaches the maximum at the liquid-
vapor critical point of the fluid. A specific cause of generat-
ing the density fluctuations makes the dependence of the pair
correlation function on the distance between particular pair
particles near the liquid-vapor critical point[1,2] differ both
from its dependence in the gas state being far from the criti-
cal point and from that in the liquid state being far from the
critical point. Moreover, the density fluctuations can result in
anomalies[3–7] with respect to various properties of fluids
near their liquid-vapor critical points. If a fluid consists of
metallic atoms, inhomogenieties of the fluid due to the physi-
cal cluster formation[8] can be observed as anomalies for
electrical properties[3], the optical reflectivity[4], and the
optical absorption[4,5]. The electrical conductivity of liquid
mercury maintained at a temperature near the critical point
decreases with a rather steep gradient as the density of mer-
cury atoms decreases[3]. The real part of the dielectric con-
stant determined using optical reflectivity and absorption
measurements for a mercury fluid near the critical point in-
creases sharply at a particular density as the density of mer-
cury atoms increases[4]. The viscosities of fluids exhibit
asymptotic divergence near the liquid-vapor critical points,
and measuring the viscosities of carbon dioxide and xenon
near their critical points allowed the critical exponent char-
acterizing the asymptotic divergence to be determined[6].
The physical cluster formation can result in a characteristic
increase in the viscosities of fluids near the critical points[7].
Various critical phenomena suggest that the formation of
stable physical clusters, which is not expected in the gas
phase, enables features of the fluid found in the liquid state
to become different from its features found in the gas state,
and this fact suggests that the physical cluster formation can

cause the gas-liquid phase transition. A contribution of the
physical cluster formation to the transition of a fluid from the
liquid state into the solid state is suggested according to the
fact that the development of physical clusters which are
formed by attractive forces among colloidal particles allows
a colloidal solution to generate a gel state[9]. A contribution
of the physical cluster formation to the liquid-solid phase
transition is also suggested according to the fact that a fluid
composed of the liquid phase and the gas phase makes the
liquid-vapor interface become smooth. The formation of the
smooth liquid-vapor interface means that the situation where
particles constituting the liquid phase are subjected is differ-
ent from a state which is given by making particles dense in
maintaining the situation where particles constituting the gas
phase are subjected. At least in order to form the smooth
liquid-vapor interface, the high-density fluid being in the liq-
uid phase must generate a macroscopic force which contrib-
utes to minimizing its surface. Moreover, generating the
clear smooth boundary between the high-density part being
the liquid phase and the low-density part being the gas phase
suggests that particles moving vigorously in the liquid phase
have to be comparatively stably confined. The capability to
confine particles moving vigorously can be generated by the
formation of physical clusters. Besides, the capability to con-
fine such particles allows for generating a macroscopic force
which contributes to minimizing the surface of the high-
density part. Such a macroscopic force should contribute to
making particles in the liquid phase become close to each
other, and as a result, the presence of the macroscopic force
should aid in transforming the fluid of the liquid phase into
the solid sate. On the other words, an effect of the physical
cluster formation on the confinement of vigorously moving
particles can contribute to the liquid-solid phase transition.
The possibility that physical clusters influence a microscopic
distribution pattern of particular atoms(or molecules) which
are dissolved as solute particles in a fluid being in the liquid
state makes another effect of the physical cluster formation
realized, since a fluid being in the gas state where an effect
of the physical cluster formation is not expected has a ten-
dency to microscopically homogeneously mix with another
fluid being in the gas state where an effect of the physical*Electronic address: kaneko@mailaps.org
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cluster formation is also not expected. Solute particles that
cannot actively contribute to the physical cluster formation
should have a tendency to distribute among physical clusters,
and solute particles that can actively contribute to the physi-
cal cluster formation should have a tendency to distribute as
a portion of the particle group which consists of particles
forming physical clusters. Hence, physical clusters can make
a microscopic distribution pattern of solute particles become
inhomogeneous in a fluid mixture such as a liquid of metallic
alloy and other solute-solvent mixtures. A specific effect of
such a microscopic inhomogeneous distribution pattern of
solute particles can be found as a macroscopic phenomenon
called the osmotic pressure, since the osmotic pressure oc-
curring by dissolving solute particles that cannot actively
contribute to the physical cluster formation must be different
from that occurring by dissolving solute particles that can
actively contribute to the physical cluster formation. In addi-
tion, the dependence of the osmotic pressure on the density
of solute particles in a situation where the stability of physi-
cal clusters is high should be considerably different from that
in a situation where the stability of physical clusters is low.
In a situation where the stability of physical clusters is low,
both the formation of physical clusters and the decomposi-
tion of physical clusters can occur as very sensitive re-
sponses to slight variations in temperature. The anomalous
behavior of the thermal conductivity of a fluid should be
found in such a specific situation[10]. Then, physical clus-
ters formed in the fluid do not have the capability to stably
confine particles moving vigorously. Allowing both the con-
finement of such particle and the release of them easily to
occur enables the fluid to be stirred. Hence, the thermal con-
ductivity of the fluid should enhance in the situation where
physical clusters loses the capability to stably confine par-
ticles moving vigorously. Although the physical cluster for-
mation can contribute to the occurence of various phenom-
ena, an effect of the physical cluster formation on the
magnitude of the pair correlation function might not be suf-
ficiently apparent. It is expected that the fraction of the con-
tribution of the physical cluster formation to the pair corre-
lation function can remain sufficiently small in comparison
with the magnitude of the pair correlation function. Even if
the pair correlation function which is determined by x-ray
scattering measurements and neutron scattering measure-
ments can expose the contribution of the physical cluster
formation to the pair correlation function, its contribution
may be found only as vague traces of peaks beside normal
peaks.

Despite this fact, various phenomena found as effects of
the physical cluster formation allow a procedure for simply
estimating the physical cluster formation to become interest-
ing in order to try examining their effects on features of a
fluid. Each physical cluster which is formed in a fluid system
is regarded as an ensemble of particles linked each other by
bonds. Then, each bond is defined as a bound state in which
a contribution of attractive forces between pair particles
dominates a contribution of the relative kinetic energy be-
tween them, according to Hill[11]. A useful procedure for
estimating the physical cluster formation due to such bonds
can be found according to a concept of Coniglio and co-
workers[12], and it results in an integral equation. The inte-

gral equation has played a role for examining the physical
cluster formation. In fact, the use of the integral equation
made it possible to examine the physical cluster formation
caused by a contribution of a extremely short-ranged attrac-
tive force[13] and to examine the physical cluster formation
caused by the Yukawa potential[14,15]. Moreover, a proce-
dure for making corrections to the Percus-Yevick approxima-
tion [16] enabled an estimate of physical cluster formation
due to the integral equation to be improved considerably
[17]. Although the integral equation enables the physical
cluster formation to be examined, it is not equivalent to the
Ornstein-Zernike equation. The use of the Ornstein-Zernike
equation has been successful for examining both a fluid be-
ing in the gas state and the fluid being in the liquid state, so
that resulting from the Ornstein-Zernike equation must be
considered indirectly to involve the contribution of the
physical cluster formation. The Ornstein-Zernike equation
should involve the contribution of the integral equation
which enables the formation of physical clusters to be exam-
ined. This fact means that subtracting the contribution of the
integral equation from the Ornstein-Zernike equation results
in an additional integral equation which is equivalent to both
an integral equation derived by Stell[16] and another one
derived by Chiew and co-workers[18]. If this additional in-
tegral equation is coupled to the integral equation which en-
ables the physical cluster formation to be examined, the two
integral equations provide an integral equation system,
which is equivalent to the Ornstein-Zernike equation. Esti-
mating an effect of the physical cluster formation on a fea-
ture of a fluid can be allowed by the use of the integral
equation system.

II. CORRELATION FUNCTIONS AND INTEGRAL
EQUATIONS

A. Integral equations for correlation functions

The pair correlation functiongij is useful for knowing
whether particles in a fluid system can move easily or can be
prevented from moving easily, and the use ofgij allows for
estimating the density fluctuations for the fluid system even
near the critical point. If three-dimensional coordinates for a
particle of speciesi and a particle of speciesj which consti-
tute a fluid are denoted byr 1

sid and r 2
s jd, the use of the pair

correlation functiongij allows for expressing the probability
that thei particle and thej particle is located in a volume
elementdr 1

sid at r 1
sid and in a volume elementdr 2

s jd at r 2
s jd,

respectively. If the distanceur 1
sid−r 2

s jdu between the two par-
ticles is represented asr s=ur ud, the probability is given as
rir jgijsrddr 1

siddr 2
s jd in which ri andr j are the densities of thei

and j particles for a uniform distribution, respectively. The
magnitude ofgijsrd is proportional to the probability that the
i particle in the volume elementdr 1

sid is located at the dis-
tancer far from the j particle in the volume elementdr 2

s jd.
This feature of the pair correlation function suggests that
maximum values ofgijsrd should become larger when par-
ticles in a fluid system are prevented from moving easily
than when they can move easily.

The i particle and thej particle have the possibility that
both of them belong to the same physical cluster. Then, the
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use of the pair correlation functionPi j allows for expressing
the probability that both thei particle in the volume element
dr 1

sid and thej particle in the volume elementdr 2
s jd belong to

the same physical cluster is expressed asrir jPi jsrddr 1
siddr 2

s jd.
The pair connectednessPi jsrd is important in order to esti-
mate the mean size of physical clusters[12]. If the probabil-
ity that the i particle in the volume elementdr 1

sid and thej
particle in the volume elementdr 2

s jd belong to a physical
cluster and another physical cluster respectively is expressed
asrir jDi jsrddr 1

siddr 2
s jd, the pair connectednessPi jsrd is related

to gijsrd as

gijsrd = Pi jsrd + Di jsrd. s2.1d

According to Kirkwood and Buff[19], the pair correlation
function gijsrd has the normalization given as

1

V
E

V

gijsrddr =
kNil − di j

Vri
+

1

V2

1

rir j
fkNiNjl − kNilkNjlg,

s2.2d

where kNil is the mean number of particles of speciesi
within volumeV [11]. The dependence ofgijsrd on V is neg-
ligible for macroscopicV, and the dependence ofkNil /V on
V and the dependence ofskNiNjl−kNilkNjld /V on V are also
negligible. Thus, Eq.(2.2) results ineVgijsrddr /V=1 in the
limit V→`. This relation and Eq.(2.1) require Pijsrd and
Di jsrd to satisfy

lim
V→`

F 1

V
E

V

Pi jsrddr +
1

V
E

V

Di jsrddrG = 1. s2.3d

Moreover, the pair correlation function behaves asgijsur 1
sid

−r 2
s jdud<1 when two particles located atr 1

sid andr 2
s jd in a fluid

system are widely separated. In the limitV→` andr →`, it
behaves asgijsrd=1 [11]. According to this fact, Eq.(2.1)
allows the physical meanings ofPi jsrd and those ofDi jsrd to
result in

lim
r→`

Pi jsrd = 0 and lim
r→`

Di jsrd = 1.

According to Eq.(2.1), the pair correlation functiongijsrd
is expressed as the sum of the contribution ofPi jsrd and the
contribution ofDi jsrd. Owing to this fact, each term of the
pair correlation function which is expressed in the form of a
density expansion[20,21] should be divided into terms con-
tributing to Pi jsrd and terms contributing toDi jsrd [12]. Di-
viding into these two kinds of terms contribute to deriving an
integral equation which should be satisfied byPi jsrd and an-
other integral equation which should be satisfied byDi jsrd.

The pair correlation function expressed in the form of a
density expansion[20,21] is obtained from the use of the
Mayer f function instead of the use of the factor expf
−buijsrdg. The Mayer f function is defined asf ijsrd
;e−buij srd−1 in whichbuijsrd is a pair potential multiplied by
b which is defined asb;1/kT. Here,k is Boltzmann’s con-
stant andT the temperature. The functionf ijsrd becomes −1
in the region of the hard core in whichuijsrd=`, and it
becomes zero outside the range in which an attractive force

between ani particle and a j particle retains effective
strength. The functionf ijsrd, however, is positive within the
range where the attractive force retains effective strength,
and it expresses the strength of the attractive interaction in
this range.

Each term found in the form of the density expansion of
gijsrd is formed by the integrals of a product off functions,
although the two coordinates corresponding to the root
points labeled 1 and 2 in the present work are not integrated
over in each term. The other coordinates which are integrated
over in each term are field points, and they are labeled 3, 4,
… in the present work. Both the root points and the field
points correspond to particle coordinates.

An ensemble of particle pairs which are specified by thef
functions forming a product in the density expansion is re-
garded as an ensemble of particle pairs linked by thef bonds
defined as thef functions. Since this ensemble is a math-
ematical cluster[21], it cannot simply correspond to a physi-
cal cluster. The ensemble can be symbolized as a diagram
having a structure which is formed from particle pairs linked
by f bonds. Every diagram which is found in the density
expansion has the same pair of root points. The density ex-
pansion corresponds to the sum of all the diagrams having
specific structures which formf bonds’ paths joining a root
point to the other root point[20,21]. The paths off bonds
allow for propagating effects of the behavior of a particle
corresponding to a root point to the other particle corre-
sponding to the other root point.

On the other hand, pair particles which are specified by an
f function have two possibilities. One is a possibility that a
contribution of attractive forces between the pair particles
exceeds a contributionE of their relative kinetic energy, and
the other is a possibility thatE exceeds a contribution of the
attractive forces. If a pair of ani particle and aj particle
which are specified by anf function are located atr 1

sid andr 2
s jd

in terms of the distancer = ur 1
sid−r 2

s jdu, the probabilitypijsrd
that the pair satisfies the conditionE+uijsrdø0 [11] is given
as

pijsrd = 2p−1/2fGs3/2d − Gs3/2,−buijdg, s2.4d

since the integralet
`e−yyt−1dy due to the definitiony

;fbEg1/2 expresses the incomplete gamma functionGst ,td.
This probability should behave aspijsrd=0 if uijsrd is a re-
pulsive potential[i.e., buijsrd.0]. The use ofpijsrd enables
f ijsrd to be given as the sum of the contributionf ij

+srd of a
bound stateE+uijsrdø0 and the contributionf ij

* srd of an
unbound stateE+uijsrd.0. Then, the relationf ijsrd= f ij

+srd
+ f ij

* srd allows the f+ function and thef* function to be ex-
pressed as

f ij
+srd ; pijsrde−buij srd, f ij

* srd ; f1 − pijsrdge−buij srd − 1.

s2.5d

If each f bond in a diagram which is found in the density
expansion ofgijsrd is, according to Eq.(2.5), expressed as
the sum of thef+ bond defined as the contribution of a bound
state and thef* bond defined as the contribution of an un-
bound state, the diagram is given as the sum of diagrams
resulting from products off+ functions andf* functions.
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Then, it is possible to find a diagram in which a root point is
connected to the other root point through at least one path of
all f+ bonds given as a product off+ functions. This diagram
can be regarded as a physical cluster, and it means that the
two particles corresponding to the two root points are two of
particles constituting the physical cluster according to Hill
[11]. The second simplest diagram in the diagrams which are
found in the density expansion ofgijsrd consists of three
particles linked by twof bonds, and the three particles cor-
respond to two root pointssr 1

sid ,r 2
s jdd and one field pointsr 3

skdd
which corresponds to a coordinates of particle of speciesk.
According to Hill [11], the three particles are bound each
other when thef bonds retain the three particles in a bound
state characterized as the conditionsEs1,3d+uiksur 1

sid−r 3
skdud

ø0 and Es3,2d+ukjsur 3
skd−r 2

s jdudø0 in which the suffix ofE
indicates a particle pair contributing toE. This situation cor-
responds to that represented as a diagram in which a root
point is connected to the other root point through at least one
path of all f+ bonds given as a product off+ functions, and
the two particles corresponding to the two root points are
two of particles constituting the same physical cluster. This
fact allows Pi jsrd to be given as the sum of contributions
resulting from every diagram having at least one path of all
f+ bonds between the root points.

The diagrams which are found in the density expansion of
gijsrd are divided into two categories. One group of diagrams
corresponds to the group of nodal diagrams having nodal
points, and the other group of diagrams corresponds to the
group of non-nodal diagrams having no nodal point. A nodal
point is a specific field point in a diagram, and missing the
field point in the diagram means that the diagram is sepa-
rated into a group including a root point and the other group
including the other root point.

Similarly, the diagrams contributing toPi jsrd should be
separated into the group of nodal diagrams and the group of
non-nodal diagrams. This fact means thatPi jsrd is expressed
asPi jsrd=Nij

+srd+Cij
+srd, in whichNij

+srd is the contribution of
all nodal diagrams having at least one path of allf+ bonds
between the two root points, andCij

+srd is the contribution of
all non-nodal diagrams having at least one path of allf+

bonds between the two root points. In the Ornstein-Zernike
equation [20], the contribution of all non-nodal diagrams
consisting of paths off bonds between the two root points
corresponds to the direct correlation functioncijsrd. Accord-
ing to the Ornstein-Zernike equation,gijsrd−1 is equal to
Nijsrd+cijsrd in which Nijsrd represents the contribution of all
nodal diagrams consisting of paths off bonds between the
two root points, andNijsrd is given as the convolution inte-
gral ok=1

L rkeciksr ikdfgkjsrkjd−1gdr k, which is simplified by
using r ik;ur 1

sid−r 3
skdu, rkj;ur 3

skd−r 2
s jdu, and dr k;dr 3

skd. If an
analogy with the Ornstein-Zernike equation is assumed, the
convolution integral of the product ofCik

+ srd and Pkjsrd
should result inNij

+srd=ok=1
L rkeCik

+ sr ikdPkjsrkjddr k. This fact
and the relationPi jsrd=Cij

+srd+Nij
+srd results in an integral

equation which is required in order to estimatePi jsrd [12].
Thus, the pair connectednessPi jsrd is given as a solution of
the integral equation expressed as

Pi jsr ijd = Cij
+sr ijd + o

k=1

L
rkE

V

Cik
+ sr ikdPkjsrkjddr k, s2.6d

whereL is the number of constituents andr ij ;ur 1
sid−r 2

s jdu=r.
This equation, which is used in the limitV→`, has the same
mathematical structure as the Ornstein-Zernike equation, and
Cij

+ in Eq. (2.6) is an unknown function.
Finding an integral equation for the correlation function

Di jsrd is possible by considering the Ornstein-Zernike equa-
tion. Owing to Eq.(2.1), the Ornstein-Zernike equation is
expressed as

Pi jsr ijd + Di jsr ijd − 1 =cijsr ijd + o
k=1

L
rkE

V

ciksr ikdPkjsrkjddr k

+ o
k=1

L
rkE

V

ciksr ikdfDkjsrkjd − 1gdr k.

s2.7d

This equation must involve the contribution of the pair con-
nectednessPi j expressed by Eq.(2.6). If the contribution of
non-nodal diagrams which do not include paths of allf+

bonds betweeni and j is expressed asC*sr ijd, the direct
correlation functioncijsr ijd which represents the contribution
of all non-nodal diagrams consisting of paths off bonds
between the two root points must be equal to the sum of
C*sr ijd andCij

+sr ijd which is the contribution of all non-nodal
diagrams having at least one path of allf+ bonds between the
two root points. According to this fact,cijsr ijd is expressed as

cijsr ijd = Cij
+sr ijd + Cij

* sr ijd. s2.8d

If Eq. (2.6) is considered, the substitution of Eq.(2.8) into
Eq. (2.7) results in an integral equation which is equivalent
to both an integral equation derived by Stell[16] and another
one derived by Chiew and co-workers[18]. This integral
equation is expressed as

Hi jsr ijd = Cij
* sr ijd + o

k=1

L
rkE

V

Cik
* sr ikdPkjsrkjddr k

+ o
k=1

L
rkE

V

Cik
+ sr ikdHkjsrkjddr k

+ o
k=1

L
rkE

V

Cik
* sr ikdHkjsrkjddr k, s2.9d

where

Hi jsr ijd ; Di jsr ijd − 1. s2.10d

According to the relation given by Eq.(2.8), an integral
equation system consisting of Eqs.(2.6) and(2.9) is equiva-
lent to the Ornstein-Zernike equation. Equation(2.6) contrib-
utes to estimating the formation of physical clusters, and Eq.
(2.9) contributes to estimating an effect of the physical clus-
ter formation. In fact, the second term and the third term
on the right-hand side in Eq.(2.9) represent a way to have
an effect of the formation of physical clusters on the corre-
lation functionHi j . An effect of these terms might play a role
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for explaining phenomena due to the formation of physical
clusters.

B. Effects of the physical cluster formation

Representing the Ornstein-Zernike equation as an integral
equation system which consists of Eq.(2.6) being relevant to
Pi jsrd and Eq.(2.9) being relevant toHi jsrd is equivalent to
actively considering that a fluid consisting of particles inter-
acting each other with attractive forces has a tendency to
become inhomogeneous. Considering the two correlation
functionsPi jsrd andHi jsrd means that particle pairs consti-
tuting a fluid are divided into two groups. One is a group of
particle pairs characterized as pair particles interacting in a
specific situation where a contribution of an attractive force
between the pair particles exceeds a contribution of their
relative kinetic energy. The other is a group of particle pairs
characterized as pair particles interacting in a specific situa-
tion where a contribution of the relative kinetic energy of the
pair particles exceeds a contribution of the attractive force
between them. Particle pairs belonging to the former group
contribute to the magnitude ofPi jsrd, and particle pairs be-
longing to the latter group contribute to the magnitude of
Di jsrd. Since the particle pairs contributing to the magnitude
of Pi jsrd form physical clusters, particle pairs contributing to
the magnitude ofPi jsrd cannot homogeneously be mixed
with particle pairs contributing to the magnitude ofDi jsrd. In
addition, it is possible for physical clusters to be made grow
in shapes similar to branches[22].

The formation of physical clusters should be neglected in
the gas state of a fluid being at least far from the critical
point. This means thatPi jsrd should always remain much
smaller in the gas phase of a fluid thanDi jsrd. Then, it is
possible to make an assumption as

Uo
k=1

L
rkE

V

Cik
* sr ikdPkjsrkjddr k + o

k=1

L
rkE

V

Cik
+ sr ikdHkjsrkjddr kU

! uHi jsr ijdu . s2.11d

Hence, the correlation functionHi jsrd being equal toDi jsrd
−1 approximately satisfies an integral equation which has the
same form as the Ornstein-Zernike equation and is given as

Hi jsr ijd < Cij
* sr ijd + o

k=1

L
rkE

V

Cik
* sr ikdHkjsrkjddr k.

s2.12d

When the gas phase of a fluid and the liquid phase of the
fluid are in equilibrium, Eq.(2.12) is applicable to examining
the behavior of this gas phase, and Eq.(2.9) should be ap-
plicable to examining the behavior of that liquid phase. In
addition, Eq. (2.12) can be an appropriate approximation
even for a fluid involving the formation of physical clusters,
if the conditionuPi jsrd /Di jsrdu!1 is satisfied for the fluid.

In the case that the contribution of the formation of physi-
cal clusters is significant, the pair connectednessPi jsrd
should be estimated. Particle pairs contributing to the mag-
nitude ofPi jsrd are characterized as pair particles interacting

in a specific situation where a contribution of an attractive
force between the pair particles exceeds a contribution of
their relative kinetic energy. Owing to this fact,Pi jsrd might
contribute to explaining the transition from the liquid sate of
a fluid to its solid state as a phenomenon due to the growth of
physical clusters. The growth of physical clusters can be
known from the mean sizeS of physical clusters which can
be estimated through the use ofPi jsrd. The equilibrium num-
ber nn of physical clusters consisting ofn particles can be
related to the pair connectednessPi j , and according to the
formula given by Coniglio and co-workers[12], the relation
betweennn andPi j is given as

o
2øn

nsn − 1dnn = o
i=1

L

o
j=1

L
rir jE

V
E

V

Pi jsur 1
sid − r 2

s jduddr 1
siddr 2

s jd.

s2.13d

If the probability psid that ani particle exists in a cluster is
independent ofn, then the factoronnnn included in Eq.
(2.13) can be related to the densityri of the i particles in the
volumeV asri =fpsid /Vgonnnn. If oi=1

L psid=1 is considered,
the sumonnnn is estimated as

o
n

nnn = Vo
i=1

L
ri . s2.14d

Since the mean physical cluster sizeS is given as S
=sonn2nnd / sonnnnd, the substitution of Eqs.(2.13) and(2.14)
into this formula results in

S= 1 +So
k=1

L
rkD−1

o
i=1

L

o
j=1

L
rir jE

V

Pi jsrddr . s2.15d

If the percolation of physical clusters does not occur in mac-
roscopicV found in a fluid system,S which is estimated for
the fluid system by Eq.(2.15) should be sufficiently indepen-
dent ofV, and the limitV→` does not influenceS. Then, the
limit V→` allows Eq.(2.15) to result in fsS−1d /Vgok=1

L rk

=0 and s1/VdeVPi jsrddr =0. This fact allows Eq.(2.3) to
result in the normalization condition which is given in the
limit V→` as s1/VdeVDi jsrddr =1. If the percolation of
physical clusters occurs in macroscopicV found in a fluid
system,S which is estimated for the fluid system by Eq.
(2.15) should be dependent onV. Then, the magnitude of
fsS−1d /Vgok=1

L rk can have a finite value being different
from zero. If a state of the fluid is in the immediate vici-
nity of the liquid-solid transition point where the relation
0,ri

sd−ri
lq!1 (ri

sd denotesri in a solid state, andri
lq

denotesri in a liquid state which can be transformed into
the solid state) is satisfied, the dependence ofS on V might
be estimated asS/V<oi=1

L ri
sd. Then, Eq.(2.15) should result

in s1/Vdoi=1
L o j=1

L rir jeVPi jsrddr <oi=1
L ri

sdok=1
L rk in the limit

V→`. This situation allows Eq. (2.3) to result in
s1/VdeVDi jsrddr <0. Moreover, the state specified by
s1/VdeVDi jsrddr <0 should extremely lack particle pairs
characterized as pair particles interacting in a specific situa-
tion where a contribution of the relative kinetic energy of the
pair particles exceeds a contribution of an attractive force
between them. This fact means that the fluid might lose a
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feature found as liquid. Thus, the growth of physical clusters
can aid the transition from the liquid state of a fluid to the
solid state through the occurrence of the percolation of
physical clusters in macroscopicV.

III. APPROXIMATE FEATURES OF CORRELATION
FUNCTIONS

A. Approximate expressions ofPij andDij

The characterization ofPi jsrd due to a pair potential can
be performed through an aid of the Percus-Yevick(PY) ap-
proximation. Simultaneously, the characterization ofDi jsrd
due to a pair potential can be performed. Then, the PY ap-
proximation results in the approximate relation between
Pi jsrd andCij

+srd [12] within the range where the contribution
of uijsrd to i and j particles is not neglected, and also it
results in the approximate relation betweenDi jsrd andCij

* srd
within the range.

The pair correlation functiongij
PYsrd due to the PY ap-

proximation is expressed asgij
PYsrdebuij =1+Nijsrd. If the re-

lationse−buij srd= f ij
+srd+ f ij

* srd+1 andNijsrd=Nij
+srd+Nij

* srd are
considered, the PY approximation is rewritten as

gij
PYsrd = f ij

+srdf1 + Nij
+srd + Nij

* srdg + ff ij
* srd + 1gNij

+srd

+ ff ij
* srd + 1gf1 + Nij

* srdg, s3.1d

whereNij
* srd is all nodal diagrams which do not include any

paths of allf+ bonds betweeni and j . The right-hand side of
Eq. (3.1) should be the sum of the terms contributing to
Pi jsrd and the terms contributing toDi jsrd owing to Eq.(2.1).
Considering this fact allows Eq.(3.1) to be divided into two
formulas. Owing toPi jsrd=Cij

+srd+Nij
+srd, one of the two for-

mulas is

Pi jsrd = f ij
+srdgij

PYsrdebuij srd + ff ij
* srd + 1gfPi jsrd − Cij

+srdg,

s3.2ad

and owing to 1+Nij
* srd=gij

PYsrdebuij −Nij
+srd, the other is

Di jsrd = ff ij
* srd + 1gfgij

PYsrd − cij
PYsrd − Pi jsrd + Cij

+srdg,

s3.2bd

wherecij
PYsrd is the direct correlation function due to the PY

approximation and is given ascij
PYsrd / s1−ebuij srdd=gij

PYsrd. In
addition, Eqs.(3.2a) and(3.2b) correspond to formulas hav-
ing specific forms which can be derived from general forms
given by Stell[16] and Chiew and co-workers[18].

By considering Eq.(2.4) and the relations expressed by
Eq. (2.5), Eqs.(3.2a) can be rewritten as

Pi jsrd +
2G„3/2,−buijsrd…

p1/2ebuij srd − 2G„3/2,−buijsrd…
Cij

+srd

=
2hGs3/2d − G„3/2,−buijsrd…jebuij srd

p1/2ebuij srd − 2G„3/2,−buijsrd…
cij

PYsrd
s1 − ebuij srdd

.

s3.3ad

Similarly, Eq. (3.2b) can be rewritten as

Di jsrd =
2G„3/2,−buijsrd…

2G„3/2,−buijsrd… − p1/2ebuij srdCij
* srd, s3.3bd

although the relations expressed by Eqs.(2.1) and(2.8) have
to be considered to obtain Eq.(3.3b). Equations(3.3a) and
(3.3b) enablePi jsrd andDi jsrd to be characterized by a pair
potential, if cij

PYsrd, Cij
+srd, and Cij

* srd are given. Moreover,
Eq. (3.3a) can be used as a closure scheme for Eq.(2.6), if
cij

PYsrd is given. If Pi jsrd is estimated with the use of Eq.
(2.6), Hi jsrd can be obtained from solving Eq.(2.9) with the
use of Eq.(3.3b). Moreover, Eqs.(3.3a) and (3.3b) suggest
that separatingPi jsrd from gijsrd allows a pair potential char-
acterizingPi jsrd to be made different from a pair potential
characterizingDi jsrd. Even if a pair potential controlling the
behavior of pair particles which interact in a situation where
a contribution of an attractive force between them exceeds a
contribution of their relative kinetic energy is different from
a pair potential controlling the behavior of pair particles
which interact in a situation where a contribution of their
relative kinetic energy exceeds a contribution of the attrac-
tive force between them, the use of Eqs.(3.3a) and (3.3b)
enablesPi jsrd andDi jsrd to be estimated.

B. Behavior of Cij
+ and behavior of Cij

*

The direct correlation functioncijsrd is the contribution of
all non-nodal diagrams consisting of paths off bonds be-
tween the two root points. Similarly,Cij

+srd is the contri-
bution of all non-nodal diagrams having at least one path
of all f+ bonds between the two root points, andCij

* srd is
the contribution of non-nodal diagrams which do not include
paths of allf+ bonds between the two root points. The simi-
larity among these diagram structures suggests that both
the behavior ofCij

+srd and the behavior ofCij
* srd should be

similar to the behavior ofcijsrd. According to the mean
spherical approximation(MSA) [23], the direct correlation
function cijsrd is given as the sum of the short-ranged con-
tribution expressed ascij

0srd and the long-ranged contribution
given as −buijsrd, and the MSA shows thatcijsrd behaves as
cijsrd / f−buijsrdg=1 and cij

0srd=0 outside the range of the
hard-core potential. Thus, the similarity betweencijsrd and
Cij

+srd suggests that the behavior ofCij
+srd should is given as

the sum of the short-ranged contribution expressed asCij
0+srd

and the long-ranged contribution toCij
+srd. Moreover, the

similarity betweencijsrd andCij
* srd suggests that the behavior

of Cij
* srd should is given as the sum of the short-ranged con-

tribution expressed asCij
0*srd and the long-ranged contribu-

tion to Cij
* srd.

A long-ranged contribution toCij
+srd is obtained from Eq.

(3.3a) by considering an assumption which is made as
Pi jsrd,f−buijsrdgn and 1øn for 1! r /si j . Here, si j is
given as si j =

1
2ssi +s jd for the diametersi of the hard

core of ani particle and the diameters j of the hard core of a
j particle. Since at least the conditionPi jsrd / fgijsrd−1gø1
is always satisfied,Pi jsrd for 1! r /si j should satisfy
fgijsrd−1g / f−buijsrdgùPi jsrd / f−buijsrdg. The MSA gives

cij
PYsrd / f−buijsrdg=1 for 1! r /si j . By considering this fact,
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the relationgij
PYsrd=cij

PYsrd / h1−expfbuijsrdgj due to the PY
approximation results in limr→`fgijsrd−1g / f−buijsrdg=1/2
owing to a general assumption limr→`uijsrd=0. This re-
sult suggests 1/2ùPi jsrd / f−buijsrdg for 1! r /si j , and the
behavior of Pi jsrd for 1! r /si j is expressed asPi jsrd
,f−buijsrdgn and 1øn. Owing to this behavior ofPi jsrd, a
long-ranged contribution toCij

+srd is found from Eq.(3.3a) as
Cij

+srd<4/s3Îpdf−buijsrdg3/2 [14]. Therefore, this result and
analogy with the MSA should allow the behavior ofCij

+srd to
be approximately expressed as

Cij
+srd = Cij

0+srd +
4

3Îp
f− buijsrdg3/2 for buijsrd , 0

s3.4d

and

Cij
0+srd = 0, for r . si j . s3.5d

Then, the expression ofCij
+srd should enable Eq.(2.6) to be

readily solved.
On the other hand, Eq.(2.1) and the relation

gij
PYsrd=cij

PYsrd / h1−expfbuijsrdgj result in Di jsrd−1
<−s1/2dbuijsrd for 1! r /si j owing to the MSA and the be-
havior ofPi jsrd. The behavior ofDi jsrd−1 allows Eq.(3.3b)
to lead toCij

* srd<−buijsrd for 1! r /si j . Therefore, this re-
sult and analogy with the MSA allow the behavior ofCij

* srd
to be approximately expressed as

Cij
* srd = Cij

0*srd − buijsrd for buijsrd , 0 s3.6d

and

Cij
0*srd = 0, for r . si j . s3.7d

Moreover, Eqs.(3.4)–(3.7) are consistent with the MSA ac-
cording to Eq.(2.8).

IV. CHARACTERIZATION OF CORRELATION
FUNCTIONS

A. Recursive solutions of integral equations

According to the MSA, the direct correlation function
cijsrd can be effective within the range where the magnitude
of uijsrd cannot be neglected, and it decays to zero as rapidly
as −buijsrd, which expresses a microscopic feature. The cor-
relation function gijsrd−1 can decay to zero much more
slowly than cijsrd [1,2]. Thus, the behavior ofgijsrd−1 is
different from the behavior ofcijsrd, which has a tendency to
maintain the microscopic feature. This fact can be suggested
even by a solution which is obtained by solving the Ornstein-
Zernike equation recursively, and the solution is given as

gij − 1 =cij + o
k1=1

L
rk1E

V

cik1
ck1jdr 3

sk1d

+ o
k1=1

L

o
k2=1

L
rk1

rk2E
V
E

V

cik1
ck1k2

ck2jdr 3
sk1ddr 4

sk2d + ¯ .

s4.1d

Particles sk1,k2, . . .d distributing around ani particle and
a j particle cannot always be positively contribute to the
probability that thei particle exists away from thej particle
at the distancer. In the case of Eq.(4.1), every convolution
integral must not always be positive for the reason thatcijsrd
are negative for at least 0, r /si j !1 owing to gijsrd−1
<−1 s0, r /si j !1d. This fact means that every convolution
integral in Eq.(4.1) cannot always positively contribute to
the magnitude ofgijsrd−1. The magnitude ofgijsrd−1 at
large r wherecijsrd<0 can, however, remain a finite value
which is not zero, in the case that convolution integrals
which can positively contribute to the magnitude ofgijsrd
−1 are dominant in Eq.(4.1).

In a way being similar to that of solving the Ornstein-
Zernike equation, solving Eq.(2.9) for Hi j recursively results
in

Hi j = Cij
* + o

k1=1

L
rk1E

V

cik1
Ck1j

* dr 3
sk1d + o

k1=1

L

o
k2=1

L
rk1

rk2E
V
E

V

cik1
ck1k2

Ck2j
* dr 3

sk1ddr 4
sk2d + o

k1=1

L
rk1E Cik1

* Pk1jdr 3
sk1d

+ o
k1=1

L

o
k2=1

L
rk1

rk2E
V
E

V

cik1
Ck1k2

* Pk2jdr 3
sk1ddr 4

sk2d + o
k1=1

L

o
k2=1

L

o
k3=1

L
rk1

rk2
rk3E

V
E

V
E

V

cik1
ck1k2

Ck2k3

* Pk3jdr 3
sk1ddr 4

sk2dr 5
sk3d + ¯ .

s4.2d

In the case of Eq.(4.2) also, every convolution integral must
not always be positive for the reason thatCij

* srd and cijsrd
are negative for at least 0, r /si j !1 owing to Hi jsrd
<−1 s0, r /si j !1d and gijsrd−1<−1 s0, r /si j !1d. This
fact means that every convolution integral in Eq.(4.2) cannot
always positively contribute to the magnitude ofHi jsrd.
However, it is possible that the magnitude ofHi jsrd at large
r whereCij

* srd<0 remains a finite value which is not zero, in

the case that convolution integrals which can positively con-
tribute to the magnitude ofHi jsrd are dominant in Eq.(4.2).
Even if Cij

* srd, according to Eq.(3.6), decays to zero as rap-
idly as −buijsrd, which expresses a microscopic feature,
Hi jsrd might still have a finite value which is not zero in the
specific situation.

Moreover, Eq.(2.6) can be solved recursively forPi j to
give as
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Pi j = Cij
+ + o

k1=1

L
rk1E

V

Cik1

+ Ck1j
+ dr 3

sk1d

+ o
k1=1

L

o
k2=1

L
rk1

rk2E
V
E

V

Cik1

+ Ck1k2

+ Ck2j
+ dr 3

sk1ddr 4
sk2d + ¯ .

s4.3d

This equation means that the probability that both thei
and j particles belong to the same physical cluster can en-
hance via the contribution of other particlessk1,k2, . . .d.
Even if Cij

+srd, according to Eq.(3.4), decays to zero as rap-
idly as f−buijsrdg3/2, which expresses a microscopic feature,
Pi jsrd can have a finite value which is not zero. The convo-
lution integrals on the right-hand side of Eq.(4.3) are posi-
tive for the reason thatCij

+srd must everywhere be positive
owing to 0,Pi jsrd s0, rd. If the contributions of particles
sk1,k2, . . .d distributing around thei particle and thej par-
ticle cannot be negligible, it is possible forPi jsrd to remain
not zero even out of the range whereCij

+srdÞ0. Although the
contributions of particlessk1,k2, . . .d distributing around thei
particle and thej particle toPi jsrd seems different from their
contributions togijsrd, according to Eq.(2.1), Eq. (4.1) re-
sulting from the Ornstein-Zernike equation corresponds to
the sum of the contribution of Eq.(4.2) and the contribution
of Eq. (4.3). The contribution of Eq.(4.3) to gijsrd, which
should be considered as the contribution of the formation of

physical custers togijsrd, is hidden in the expression of Eq.
(4.1).

B. Expressions given as differential equations

The ranges within which the correlation functionscijsrd,
Cij

+srd, andCij
* srd are not zero can remain microscopic sizes,

according to the perspective of the MSA and the perspectives
of the approximations given as Eqs.(3.4) and (3.6). These
perspectives allowPi jsrd andHi jsrd in the convolution inte-
grals in Eqs.(2.6) and(2.9) to be expressed as Taylor series
expansions. One of the Taylor series expansions allows Eqs.
(2.6) to be given as

Pi jsrd = Cij
+srd + o

k=1

L
rkE

V

Cik
+ sur 3

skdudPkjsur uddr 3
skd

+
1

6o
k=1

L
rkE

V

Cik
+ sur 3

skdudur 3
skdu2¹2Pkjsur uddr 3

skd

+
1

16ok=1

L
rkE

V

Cik
+ sur 3

skdudur 3
skdu4DrPkjsur uddr 3

skd + ¯ ,

s4.4d
where

Dr ; −
2

r3

]

]r
+

2

r2

]2

]r2 +
8

15

1

r

]3

]r3 +
1

60

]4

]r4 . s4.5d

The other of the Taylor series expansions allow Eqs.(2.9) to
be given as

Hi jsrd = Cij
* srd + o

k=1

L
rkE

V

Cik
* sur 3

skdudPkjsur uddr 3
skd +

1

6o
k=1

L
rkE

V

Cik
* sur 3

skdudur 3
skdu2¹2Pkjsur uddr 3

skd +
1

16ok=1

L
rkE

V

Cik
* sur 3

skdud

3ur 3
skdu4DrPkjsur uddr 3

skd + ¯ + o
k=1

L
rkE

V

ciksur 3
skdudHkjsur uddr 3

skd +
1

6o
k=1

L
rkE

V

ciksur 3
skdudur 3

skdu2¹2Hkjsur uddr 3
skd

+
1

16ok=1

L
rkE

V

ciksur 3
skdudur 3

skdu4DrHkjsur uddr 3
skd + ¯ . s4.6d

Even when the distance between ani particle and aj
particle is much farther beyond the range where the magni-
tude ofuijsrd cannot be neglected, if the correlation between
the i and j particles can be found, thenPi jsr ijd andHi jsr ijd
can be estimated from differential equations resulting from
Eqs. (4.4) and (4.6). A differential equation resulting from
Eq. (4.4) is expressed as

1

6o
k=1

L
rkE

V

Cik
+ sur 3

skdudur 3
skdu2dr 3

skd¹2Pkjsrd

− o
k=1

L Fdik − rkE
V

Cik
+ sur 3

skduddr 3
skdGPkjsrd < − Cij

+srd,

s4.7d

where Cij
+srd on the right-hand side should be given as

Cij
+srd=4/s3Îpdf−buijsrdg3/2. According to Eq,(4.7), Pi jsrd

is generated fromCij
+srd regarded as a source. Thus, the re-

lation betweenPi jsrd andCij
+srd in Eq. (4.7) is similar to that

in Eq. (4.3) since Eq.(4.3) represents thatPi jsrd is composed
of contributions of quantitiesCik1

+ Cik2

+ , . . . ,Ckl j
+ sl =1,2, . . .d.

The behavior ofPi jsrd out of the range in which the magni-
tude ofuijsrd can effectively contribute to the attractive force
between ani particle and aj particle expresses a long-ranged
feature ofPi jsrd which involves contributions of a number of
particles. In the case of Eq.(4.3), the contributions of
Cik1

0+ ,Cik2

0+ , . . . ,Ckl j
0+ sl =1,2, . . .d are required to estimate the

long-ranged feature ofPi jsrd. In the case of Eq.(4.7), it is
possible to estimate the long-ranged feature ofPi jsrd without
knowing the contribution ofCij

0+srd. This is an advantage of
Eq. (4.7).
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A differential equation resulting from Eq.(4.6) is ex-
pressed as

1

6o
k=1

L
rkE

V

Cik
* sur 3

skdudur 3
skdu2dr 3

skd¹2Pkjsrd

+ o
k=1

L
rkE

V

Cik
* sur 3

skduddr 3
skdPkjsrd

+
1

6o
k=1

L
rkE

V

ciksur 3
skdudur 3

skdu2dr 3
skd¹2Hkjsrd

− o
k=1

L Fdik − rkE
V

ciksur 3
skduddr 3

skdGHkjsrd < − Cij
* srd,

s4.8d

where Cij
* srd on the right-hand side should be given as

Cij
* srd=−buijsrd. If a fluid exists as the gas state without

physical clusters, the first term and the second term on the
left-hand side of Eq.(4.8) should be completely neglected. If
physical clusters contribute to features of a fluid,Pi jsrd
should be estimated as a solution of Eq.(4.7). Next, using
the solution,Hi jsrd should be estimated as a solution of Eq.
(4.8). In the case that the first term and the second term on
the left-hand side of Eq.(4.8) can be regarded as more im-
portant sources thanCij

* srd, the formation of physical clusters
should considerably influences a feature of a fluid.

V. SPECIFIC BEHAVIOR OF CORRELATION FUCTIONS

A. Features found near the triple point

The behavior of the pressureP at the triple point enables
specific features of correlation functions to be revealed. Ac-
cording to the compressibility equation, the relations given
by Eq. (2.1) and(A4) allow the pressureP of a single com-
ponent fluid to be expressed as

FbS ]P

]r
D

V,T
G−1

= P̃s0d + H̃s0d + 1. s5.1d

In addition, suffixes added to quantities such asPi jsrd and
Hi jsrd are omitted owing to considering a single-component

fluid in this section. IfP̃s0d being found from Eq.(A2) and

H̃s0d being found from Eq.(A3) are substituted into Eq.
(5.1), Eq. (5.1) is rewritten as

1

b
S ]r

]P
D

V,T
=

C̃+s0d

1 − C̃+s0d
+

C̃*s0d + C̃*s0dP̃s0d

1 − C̃+s0d − C̃*s0d
+ 1.

s5.2d

According to Eq.(2.15), the mean physical cluster sizeS is

given asS=1+P̃s0d, in which the relation 0, P̃s0d is always
satisfied. If a relation given by Eq.(A2) is considered, it is

expressed asS=1/f1−C̃+s0dg. Since the relation 1øS is al-

ways satisfied, the value ofC̃+s0d must satisfy the relation
given as

0 ø C̃+s0d ø 1. s5.3d

If the relation s]r /]PdV,T<0 is generally satisfied at the

triple point, Eq. (5.2) and the relationP̃s0d=1/s1−C̃+s0dd
−1 require that the relation 1!−C̃*s0d be satisfied at the
triple point owing to the relation given by Eq.(5.3).

The relation s]r /]PdV,T<0 makes Eq. (5.1) require
ksN/Vd2l−kN/Vl2<0, since the density fluctuations are ex-

pressed asksN/Vd2l−kN/Vl2=skN/Vl /VdfPs0d+H̃s0d+1g if
the number of particles in volumeV is expressed asN. The
relation s]r /]PdV,T<0 shows that the density fluctuations
are prevented at the triple point. This fact suggests the oc-
currence of two phenomena. One of the two phenomena rep-
resents that particular particle pairs contributing to the mag-
nitude of Dsrd are confined among branches of physical
clusters. The other represents that the percolation of physical
clusters occurs at least near the triple point. If the percolation
of physical clusters occurs near the triple point, the relation

1! P̃s0d should be satisfied according to Eq.(2.15). Then,

the relation 1! P̃s0d requires 1!−H̃s0d at the triple point.

The relation 1!−H̃s0d is equivalent tos1/VdeVDsrddr <0
owing to Dsrd=Hsrd+1, and decreasing the magnitude of

Dsrd toward zero means that the magnitude of −H̃s0d is
made diverge. Each particle pair which contributes to the
magnitude ofDsrd corresponds to a specific particle pair
characterized as pair particles interacting in a situation where
a contribution of the relative kinetic energy of the pair par-
ticles exceeds a contribution of the attractive force acting
between them, and such particle pairs should contribute to
maintaining the density fluctuations. This fact suggests the
assumption that particle pairs which contribute to the mag-
nitude ofDsrd are confined among branches of physical clus-
ters formed by particle pairs which contribute to the magni-
tude ofPsrd. The more densely branches of physical clusters
are developed, the more frequently particle pairs which con-
tribute to the magnitude ofDsrd and which are confined
among the branches of physical clusters can be exchanged
for particle pairs which contribute to the magnitude ofPsrd.
This effect allows for decreasing the magnitude ofDsrd and

allows 1!−H̃s0d to be caused. This fact, which results in
s1/VdeVDsrddr <0, allows a fluid to be transformed from the
liquid state into the solid state. It can become consistent with
the behavior which is found from the discussion of Sec. II B
since the behavior is expressed near a liquid-solid transition
point as s1/VdeVDsrddr <0. If the percolation of physical
clusters does not occur even at the triple point, the magnitude

of P̃s0d should not be large according to Eq.(2.15). Then,

the magnitude of −H̃s0d also should not be large, since the

relation s]r /]PdV,T<0 requiresH̃s0d<−1−P̃s0d. This fact
means that the magnitude ofDsrd can decrease not toward
zero as the densityr increases toward a specific value being
given at the triple point. It is somewhat unreasonable to al-
low a fluid to be transformed from the liquid state into the
solid state under the condition that the magnitude ofDsrd
does not become sufficiently small. Therefore, the condition
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1! P̃s0d corresponding to the occurrence of the percolation
should be satisfied near the triple point. Ultimately, the as-

sumption of 1! P̃s0d means that branches of physical clus-
ters which develop densely over the whole ofV can confine
particle pairs contributing to the magnitude ofDsrd among

them, and the assumption of 1! P̃s0d near the triple point is
effective for explaining the reason that the density fluctua-
tions decease toward vanishing asr increases toward a spe-
cific value being given at the triple point.

B. Features found near the critical point and far from that

According to the magnitude ofb−1s]r /]PdV,T estimated
by differentiating the equation of state of the hard-sphere
fluid [21] with respect tor, the density fluctuations in a
hard-sphere fluid system are simply reduced as the density of
hard spheres increases. However, the presence of an attrac-
tive force acting between particles enables the density fluc-
tuations to become extremely large asr increases toward the
critical point. If a contribution of the hard-core potential to
maintaining the average distance between particles in a fluid
system is less important than a contribution of an attractive
force to minimizing the average distance, the attractive force
acting between particles can contribute to developing the
density fluctuations. If particle pairs which correspond to
particle pairs contributing to the magnitude ofDsrd start to
be confined among branches of physical clusters, then the
occurrence of dense regions due to confining the particle
pairs among the branches can considerably develop the den-
sity fluctuations since the occurrence of such dense regions
in the fluid system makes the other regions rare[22].

The growth of physical clusters, which is important for
confining particle pairs among their branches, cannot, how-
ever, simply develop the density fluctuations. The percola-
tion of physical clusters cannot result in developing the den-
sity fluctuations. Although the percolation of physical

clusters occurs at the condition given as 1−C̃+s0d=0, the

relation P̃s0d=1/f1−C̃+s0dg−1 prevents the magnitude of
b−1s]r /]PdV,T given as Eq.(5.2) from diverging to the infin-

ity at the condition 1−C̃+s0d=0. This fact and Eq.(5.1) sug-
gest that the occurrence of the extremely large density fluc-

tuations must be interpreted through the behavior ofH̃s0d.
The magnitude ofH̃s0d is given as the contribution of par-
ticle pairs characterized as pair particles interacting in a spe-
cific situation where a contribution of the relative kinetic
energy of the pair particles exceeds a contribution of the
attractive force between them. If particles belonging to the
group of particle pairs which contribute to the magnitude of

H̃s0d are confined among branches of physical clusters, the
movements of the particles belonging to the group are re-
stricted. The movement restriction of the particles should
enhance maximum values ofDsrd, and then, an increase in
maximum values ofHsrd defined asHsrd;Dsrd−1 should

increase the magnitude ofH̃s0d. On the other hand, the prob-
ability that particle pairs contributing to the magnitude of
Dsrd are exchanged for particle pairs contributing to the

magnitude ofPsrd should be raised when the particle pairs
contributing to the magnitude ofDsrd are confined among
the branches of physical clusters. Raising this probability
should contribute to a decrease in the magnitude ofDsrd.
The effect of raising the probability should, however, be less
dominant than the effect of the movement restriction if
branches of physical clusters are not dense. Then, the occur-
rence of confining particles among branches of the physical
clusters can efficiently enhance the magnitude ofH̃s0d. This
means that the critical point should correspond to a specific
situation where branches of physical clusters do not become
dense yet even if large physical clusters beyond semimicro
sizes might be included in a fluid. Owing to such a specific
situation, the occurrence of confining particles among
branches of the physical clusters allows the magnitude of
H̃s0d, which should behave asH̃s0d<0 at r<0, to increase
toward an extremely large positive value asr increases to-
ward the critical point.

The behavior ofH̃s0d must be changed when the value of
r exceeds that at the critical point. An increase in the value
of r allows the contribution of attractive forces to the growth
of physical clusters to become more effective since the in-
crease decreases the average distance between particles. The
development of branches of physical clusters should raise the
probability that particle pairs contributing to the magnitude
of Dsrd are exchanged for particle pairs contributing to the
magnitude ofPsrd. These effects should decrease the magni-

tude of Dsrd as r increases. This suggests that afterH̃s0d
reaches the maximum,H̃s0d must decrease asr increases. If
an increase in the value ofr allows a condition of a fluid to

reach the triple point, then the magnitude ofH̃s0d must reach
an extremely large negative value as discussed in Sec. V A.

For a fluid consisting of particles interacting without at-

tractive forces, the sumC̃+s0d+C̃*s0d being equal toc̃s0d
always behaves as a negative quantity according to the mag-
nitude of b−1s]r /]PdV,T estimated by differentiating the
equation of state of the hard-sphere fluid[21] with respect to

r, although the magnitude ofC̃+s0d+C̃*s0d approaches zero
as the density of hard spheres approaches zero. As the den-

sity of hard spheres increases, the negative value ofC̃+s0d
+C̃*s0d decreases simply. If a solution given by Cummings
and Smith[24] is used, it is, however, shown that a contri-
bution of attractive forces among particles allows the mag-

nitude ofC̃+s0d+C̃*s0d to increase toward the maximum asr
increases. After reaching the maximum, the magnitude of

C̃+s0d+C̃*s0d decreases toward a large negative value asr
increases. This fact means that the presence of an attractive
force acting between particles enables the magnitude of

C̃*s0d to reach the maximum at a particular value ofr, since

the magnitude ofC̃+s0d is maintained within the range 0

ø C̃+s0dø1. Moreover, the aid of confining particular par-
ticles among branches of physical clusters should make the

maximum value ofC̃+s0d+C̃*s0d−1 approach zero near the

critical point. If the relation 0, C̃+s0d!1 is expected even

near the critical point, then the maximum value ofC̃*s0d
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reaches a particular value given asC̃*s0d<1 at the critical

point. Therefore, the magnitude ofC̃*s0d should always sat-

isfy the relationC̃*s0d,1.
Owing to Eq. (5.1) and a relation due to Eq.(A4), the

quantityC̃+s0d+C̃*s0d−1 can be related to the pressureP as

bs]P/]rdV,T=1−C̃+s0d−C̃*s0d. If the pressureP which is
given for a single component fluid by the pressure equation
bP=r−sr2/6dbeVrfdusrd /drgfPsrd+Dsrdgdr is differenti-

ated with respect tor, consideringbs]P/]rdV,T=1−C̃+s0d
−C̃*s0d allows the pressure to be expressed as

bP = r −
r

2
C̃+s0d +

1

12
br3E

V

r
dusrd

dr
S ]Psrd

]r
D

V,T
dr

−
r

2
C̃*s0d +

1

12
br3E

V

r
dusrd

dr
S ]Dsrd

]r
D

V,T
dr . s5.4d

If the relation 0, C̃+s0d!1 is satisfied for a fluid, then it is
expected that both the second and third terms on the right-
hand side of Eq.(5.4) are negligible owing to the relation

0, P̃s0d!1 due to P̃s0d=1/f1−C̃+s0dg−1. Moreover, the
relation, the relationuf]Psrd /]rgV,Tu!1 might be expected
according to the behavior of the pair connectedness found
from the previous work[22]. The fact that the second and
third terms on the right-hand side of Eq.(5.4) can be ne-
glected suggests that particles contributing dominantly to the
pressureP are those which belong to a group of particle pairs
characterized as pair particles interacting in a specific situa-
tion where a contribution of the relative kinetic energy of the
pair particles exceeds a contribution of the attractive force
between them. Moreover, the fact that the pressure at the
critical point is given asP<sr /2bd+sr3/12deVrfdusrd /drg
3f]Dsrd /]rgV,Tdr owing to Eq.(5.4) persuades the relation
1.−sbr2/6deVrfdusrd /drgf]Dsrd /]rgV,Tdr to be found at
the critical point. The factor sr3/12deVrfdusrd /drg
3f]Dsrd /]rgV,Tdr should, however, have a large negative
value in a situation being far from the critical point since

C̃*s0d has a large negative value in the situation. Thus, Eq.
(5.4) requires the relation 0.eVrfdusrd /drgf]Dsrd /]rgdr ,
although the pressure equation requires the relation 0
,eVrfdusrd /drgDsrddr . This fact means that a contribution
of eVrfdusrd /drgDsrddr to the pressure decreases at least in a
situation being far from the critical point, asr increases.
Since the factoreVrfdusrd /drgDsrddr corresponds to the
contribution of particle pairs characterized as pair particles
interacting in a specific situation where a contribution of the
relative kinetic energy of the pair particles exceeds a contri-
bution of the attractive force between them, a decrease in the
magnitude ofeVrfdusrd /drgDsrddr due to an increase in the
value ofr is reasonable.

C. Long-ranged features of correlation functions

The use of Eqs.(4.7) and (4.8) allows long-ranged fea-
tures of the correlation functionsPsrd and Hsrd to be esti-
mated. Their long-ranged features should aid in interpreting

a particular feature of a fluid which is caused in a specific
situation by the formation of physical clusters. According to
Eq. (4.7), a differential equation whichPsrd should satisfy in
the region specified by 1! r /s is given as

¹2Psrd − f1 − C̃+s0dg
1

z+Psrd = −
4

3Îpz+
f− busrdg3/2,

s5.5d

where

z+ ;
r

6
E

V

C+stdt2dt . s5.6d

Equation(5.6) expresses that at leastC̃+s0d,6z+ is always
satisfied. Equation(5.5) represents a contribution of a micro-
scopic quantitybusrd to Psrd, and Eq.(5.5) shows that a
long-ranged feature ofPsrd can be found as the behavior of
Psrd out of the range within which the magnitude ofusrd can
effectively generate the attractive force between two par-
ticles. This means that the long-ranged feature ofPsrd which
is estimated by solving Eq.(5.5) is caused by involving con-
tributions of a number of particles.

If a form of busrd is assumed asbusrd=−fsrd / r
3flimr→` fsrd,`g, a solution of Eq.(5.5), which repre-
sents the long-ranged feature ofPsrd, is given as

Psrd =
1

3p3/2z+E
V

1

t
expH−

1

sz+d1/2f1 − C̃+s0dg1/2tJ
3Ffsur − t ud

ur − t u G3/2

dt st ; ut ud. s5.7d

If the value of r is larger than the value oft for which 0

, t−1 exph−sz+d−1/2f1−C̃+s0dg1/2tj!1 is satisfied, Eq.(5.7)
can be rewritten as

Psrd =
1

3p3/2z+

1

r3/2E
V

1

t
expH−

1

sz+d1/2f1 − C̃+s0dg1/2tJ
3ffsur − t udg3/2 3 Fo

n=0

`
1

rn o
m=−n

n
sn − md!
sn + md!

Pn
mscosqd

3eimwtnPn
mscosq8de−imw8G3/2

dt , s5.8d

wherePn
mscosqd are the Legendre functions, and the spheri-

cal coordinates ofr and t are expressed assr ,q ,wd and
st ,q8 ,w8d, respectively. Iffsrd is expressed as the Taylor
series, which is a power-series expansion offsrd in powers
of r, Eq. (5.8) shows that the dependence ofPsrd on r can be
dominated at least by the term includingr−3/2.

According to Eq.(4.8), a differential equation whichHsrd
should satisfy in the region specified by 1! r /s is given as
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¹2Hsrd −
1

z
f1 − c̃s0dgHsrd

=
1

z
busrd −

1

z
H z*

z+f1 − C̃+s0dg + C̃*s0dJPsrd

+
3

4Îp

z*

z
f− busrdg3/2, s5.9d

where

z* ;
r

6
E

V

C*stdt2dt, z ;
r

6
E

V

cstdt2dt . s5.10d

The magnitudes ofz* and z subjects the dependence of a
solution of Eq.(5.9) on r. The value ofcstd is negative in a
specific range 0, t, t0 and positive out of the range. More-
over, the value ofC*std is negative in a specific range
0, t, t08 and positive out of the range, since the behavior of
C*std is similar to that of cstd. Despite this fact, if

4pre0
t08C*stddt+4pret08

`C*stddt is positive, 4pre0
t08C*stdt2dt

+4pret08
`C*stdt2dt should be positive. Then, the relation

C̃*s0d,6z* should be satisfied. Similarly, if 4pre0
t0cstddt

+4pret0
`cstddt is positive, 4pre0

t0cstdt2dt+4pret0
`cstdt2dt is

positive. Then, the relationc̃s0d,6z should be satisfied. In
addition, the value ofc̃s0d is the maximum at the critical

point, and the value ofC̃*s0d should be the maximum near
the critical point. This fact allows for making the assumption
that bothz* andz reach the maximum near the critical point.
Owing to the contribution of the powert2 to the integrals

being estimated from Eq.(5.10), it is assumed thatC̃*s0d
!6z* andc̃s0d!6z are satisfied near the critical point where

the maximum values ofC̃*s0d and c̃s0d are given asC̃*s0d
<1 andc̃s0d=1, respectively.

If a form of busrd is assumed asbusrd=−fsrd / r
3flimr→` fsrd,`g, a solution of Eq.(5.9), which repre-
sents the long-ranged feature ofHsrd, is given as

Hsrd =
1

4pz
E

V

1

t
expF−

1

z1/2f1 − c̃s0dg1/2tG
3H−

fsur − t ud
ur − t u

− F z*

z+f1 − C̃+s0dg + C̃*s0dG
3Psur − t ud +

3

4Îp
z*Ffsur − t ud

ur − t u G3/2Jdt st ; ut ud.

s5.11d

Equation (5.11) shows that the dependence ofHsrd on r
depends on the magnitude ofz* . If the magnitude ofz* is
sufficiently small, a contribution offsur − t ud / ur − t u can
dominate the dependence ofHsrd on r, and then its depen-
dence can be expressed as the product of the factorr−1 and a
particular function given as the Taylor series due to powers
of r. If the magnitude ofz* is sufficiently large, both a con-
tribution of Psur − t ud and a contribution offfsur − t ud / ur
− t ug−3/2 can make the dependence ofHsrd on r behave at

least asr−3/2. This fact means that the dependence of the sum
Psrd+Dsrd on r develops the deviation from the dependence
expressed as the product of the factorr−1 and a particular
function given as the Taylor series due to powers ofr, as the
magnitude ofz* increases. This means that an effect of the
physical cluster formation on a specific feature of a fluid is
made become apparent whenz* is large. Both the factor
Psur − t ud and the factorffsur − t ud / ur − t ug−3/2 in Eq. (5.11) are
directly relevant to the formation of physical clusters, and
the terms including these factors should be neglected if the
influence of their formation on features of a fluid are negli-
gible. If the dependence ofgsrd on r deviates from the de-
pendence expressed as the product of the factorr−1 and a
particular function which can be given as the Taylor series
[2], then it is suggested that its dependence onr can be
represented as a specific series including integer powers ofr
and half integer powers ofr. This means that it should be
effective to consider the possibility that the dependence of
Psrd on r and the dependence ofHsrd on r are expressed by
Eqs. (5.8) and (5.11), respectively. If this possibility is true
for a specific gas-liquid critical phenomenon, it is inferred
that the formation of physical clusters plays a role for driving
the critical phenomenon and for characterizing the fluid as
liquid. Then, the possibility should demonstrate the value of
separating the Ornstein-Zernike equation into the two inte-
gral equations given by Eqs.(2.6) and (2.9).

VI. CONCLUSIONS

A system of two integral equations corresponding to the
Ornstein-Zernike equation should make it possible to show
the contribution of the physical cluster formation to the pair
correlation function and should aid in estimating an effect of
the physical cluster formation on a feature of a fluid. Here,
each physical cluster is regarded as an ensemble of particles
linked each other by every bond which is defined as a bound
state in which a contribution of attractive forces between pair
particles dominates a contribution of the relative kinetic en-
ergy between them. The system of two integral equations
makes the pair correlation function represented as the sum
of two correlation functions. One of the two correlation
functions is the pair connectedness, which contributes to es-
timating the formation of physical clusters. The other is a
correlation function expressing the correlation between par-
ticles interacting in a specific situation where a contribution
of the relative kinetic energy between pair particles exceeds
a contribution of attractive forces between them. Represent-
ing the pair correlation function as the sum of the two cor-
relation functions might contribute to explaining phase tran-
sitions and critical phenomena due to the formation of
physical clusters.

APPENDIX: FOURIER TRANSFORMS OF INTEGRAL
EQUATIONS

If each correlation function is expressed asFijsrd which
satisfies limr→0 rFijsrd=0, then a Fourier transform ofFijsrd
is given as
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F̃ijskd ; lim
V→`

srir jd1/2E
V

Fijsrdexpfik · r gdr

= 4psrir jd1/2E
0

`

coskrdrE
r

`

tdtFijstd

3sr ; ur u, k ; uk ud. sA1d

If V is macroscopic, the integralÎrir jeVFijsrdeik·rdr can be

expressed asF̃ijskd given by Eq.(A1). According to the ex-
pression of Eq.(A1), a Fourier transform of Eq.(2.6) is
given as

o
k=1

L
fdik − C̃ik

+ skdgP̃kjskd = C̃ij
+skd. sA2d

Similarly, a Fourier transform of Eq.(2.9) is given as

o
k=1

L
fdik − C̃ik

* skd − C̃ik
+ skdgH̃kjskd = C̃ij

* skd + o
k=1

L
C̃ik

* skdP̃kjskd.

sA3d

Moreover, a Fourier transform of the Ornstein-Zernike equa-
tion expressed as Eq.(2.7) is given as

o
k=1

L
fdik − c̃ikskdgfP̃kjskd + H̃kjskdg = c̃i jskd, sA4d

where, owing to Eq.(2.8),

c̃i jskd = C̃ij
+skd + C̃ij

* skd. sA5d
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